Micro- and submicrostructuring thin polymer films with two and three-beam single pulse laser interference lithography.
نویسندگان
چکیده
In this work we report the application of two and three-beam single pulse laser interference lithography to thin polymer films of poly(trimethylene terephthalate) (PTT). By irradiating the sample surface with temporary and spatially overlapped single pulses from two or three coherent beams and changing the angles of incidence, we have accomplished the fabrication of large-area polymer micro and submicrogratings as well as submicrometric cavities arranged in a hexagonal lattice. The characterization of the structures in real space by atomic force microscopy (AFM) and scanning electron microscopy (SEM) has allowed us to determine the formation mechanism of the microgratings to be based on different ablation regimes depending on the local fluence. Moreover, complementary characterization of the submicrometric cavities in reciprocal space by grazing incidence small-angle X-ray scattering (GISAXS) confirms the existence of large areas where two-dimensional order is present. The experiments presented in this work demonstrate the suitability of single pulse laser interference lithography for micro and submicrostructuring polymer films, opening up new possibilities for patterning and paving the way for potential applications where polymer structures are involved.
منابع مشابه
Five beam holographic lithography for simultaneous fabrication of three dimensional photonic crystal templates and line defects using phase tunable diffractive optical element.
This paper demonstrates an approach for laser holographic patterning of three-dimensional photonic lattice structures using a single diffractive optical element. The diffractive optical element is fabricated by recording gratings in a photosensitive polymer using a two-beam interference method and has four diffraction gratings oriented with four-fold symmetry around a central opening. Four firs...
متن کاملBragg-Angle Diffraction in Slant Gratings Fabricated by Single-Beam Interference Lithography
A single-beam interference-lithography scheme is demonstrated for the fabrication of large-area slant gratings, which requires exposure of the photoresist thin film spin-coated on a glass plate with polished side-walls to a single laser beam in the ultraviolet and requires small coherence length of the laser. No additional beam splitting scheme and no adjustments for laser-beam overlapping and ...
متن کاملEnhanced depth of field laser processing using an ultra-high-speed axial scanner
Related Articles Effects of polarization on four-beam laser interference lithography Appl. Phys. Lett. 102, 081903 (2013) Absorption measurements on silver bromide crystals and fibers in the infrared J. Appl. Phys. 113, 043111 (2013) Continuous wave ultraviolet-laser sintering of ZnO and TiO2 nanoparticle thin films at low laser powers J. Appl. Phys. 113, 044310 (2013) Controlling laser emissio...
متن کاملFabrication and Optical Characterization of Silicon Nanostructure Arrays by Laser Interference Lithography and Metal-Assisted Chemical Etching
In this paper metal-assisted chemical etching has been applied to pattern porous silicon regions and silicon nanohole arrays in submicron period simply by using positive photoresist as a mask layer. In order to define silicon nanostructures, Metal-assisted chemical etching (MaCE) was carried out with silver catalyst. Provided solution (or materiel) in combination with laser interference lithogr...
متن کاملNanopatterning on nonplanar and fragile substrates with ice resists.
Electron beam (e-beam) lithography using polymer resists is an important technology that provides the spatial resolution needed for nanodevice fabrication. But it is often desirable to pattern nonplanar structures on which polymeric resists cannot be reliably applied. Furthermore, fragile substrates, such as free-standing nanotubes or thin films, cannot tolerate the vigorous mechanical scrubbin...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Langmuir : the ACS journal of surfaces and colloids
دوره 30 29 شماره
صفحات -
تاریخ انتشار 2014